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H~, Tracking-Based Sliding Mode Control for
Uncertain Nonlinear Systems via an Adaptive
Fuzzy-Neural Approach
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Abstract—In this paper, a novel adaptive fuzzy-neural sliding network (RBFNN) [13] proposed for nonlinear systems to adap-
mode controller with H, tracking performance for uncertain  tively compensate the nonlinearities of the systems, a direct and
nonlinear systems is proposed to attenuate the effects causedqirectadaptive control schemes using fuzzy systems and neural

by unmodeled dynamics, disturbances and approximate errors. - . . .
Because of the advantages of fuzzy-neural systems, which Cannetworksfornonlmearsystems [14]to provide design algorithms

uniform|y approximate nonlinear continuous functions to ar- fOI’ Stable Contr0||el’s, etc. In addition, Contl’0| SyStemS based on
bitrary accuracy, adaptive fuzzy-neural control theory is then afuzzy-neural control scheme are augmented with sliding mode
employed to derive the update laws for approximating the uncer- control (SMC) [15], [16] to ensure global stability and robustness

tain nonlinear functions of the dynamical system. Furthermore, to disturbances. With the use of the adaptive fuzzy-neural con-

the H, tracking design technique and the sliding mode control L
method are incorporated into the adaptive fuzzy-neural control trol [10]-{12], [29] and the sliding mode control [17], [19], [31],

scheme so that the derived controller is robust with respect to WO objectives can be achieved. First, modeling impression and
unmodeled dynamics, disturbances and approximate errors. bounded disturbance are effectively compensated. Secondly, the
Compared with conventional methods, the proposed approach stability and robustness of the system can be verified.

not only assures closed-loop stability, but also guarantees af .., Variable structure control with a sliding mode [36]-[39] has

tracking performance for the overall system based on a much . .
relaxed assumption without prior knowledge on the upper bound attracted great interest because of the essential property of the

of the lumped uncertainties. Simulation results have demonstrated Nnonlinear feedback control, which has a discontinuity on one or
that the effect of the lumped uncertainties on tracking error more manifolds in the state space. It is particularly suited to the
is efficiently attenuated, and chattering of the control input is deterministic control of uncertain and nonlinear systems [36],
significantly reduced by using the proposed approach. [38]. Although sliding mode control has long being known for its
Index Terms—Adaptive control, fuzzy-neural approximator, capabilities in achieving robust control, however, it also suffers
Ho, tracking performance, sliding mode control, uncertain  from large control chattering that may excite the unmodeled
nonlinear systems. high frequency response of the systems due to the discontinuous
switching and imperfect implementations. In general, there is a
|. INTRODUCTION trade-off between chattering and robustness. Various controllers
incorporating the sliding mode control and fuzzy control have

;)/Ir_e?j ttr(])en?:r?;/c(j:%?tl?o?g?;;é ﬁg'&?ﬁ;ﬁ’fggﬁgfﬁﬁfglge%%_en proposed [18]-[26] to reduce the chattering in sliding mode

: . control. Most of the proposed methods, however, require that
velopment of the fuzzy logic control, neural networks are aISr?onlinear functions of the dynamical system are known, which
applied to several control problems [4]-[7] with satisfactory s impractical in real applications. Furthermore sliding’ mode
sults. Because both the neural network and fuzzy logic system : '

are universal approximators [8], [9], researches [10]{12], [Zgntrol rejects uncertainties and disturbances provided matching

. i nditions are satisfied. The key assumption is that the matching
have been conducted to derive various fuzzy-neural controllers L .
Uncertainties or disturbances are bounded, and bounds on norm

to obtain better control performance. Examples include an adap- - ) :
) . . i : : the uncertainties are available for design. However, due to the
tive tracking control method with a radial basis function neura . . .
complexity of the structure of uncertainties, uncertainty bounds
may not be easily obtained. Based on estimated upper bounds
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the derived update laws. Subsequently, fiig, tracking de-

sign technique and the sliding mode control method are incor-

porated into the adaptive fuzzy-neural control scheme to derive

the control law. As a result, the overall system by usingfhg

tracking-based adaptive fuzzy-neural sliding mode controller is

robust with respect to unmodeled dynamics, disturbances, and

approximate errors. Compared with conventional fuzzy sliding

mode control approaches which generally require prior knowl-

edge on the upper bound of the uncertainties, the proposed ap-

proach not only assures closed-loop stability, but also guaran- Layer! LayerII Layer Il Layer IV

tees a desiredl ., tracking performance for the overall system . , .

. Fig. 1. Configuration of a fuzzy-neural approximator.

based on a much relaxed assumption. Moreover, control chat:

tering inherent in conventional sliding mode control is signifi-

cantly reduced by using the proposed approach. Lemma 1: Consider the nonlinear system (1) with given non-
This paper is organized as follows. Section Il gives a briéihear functionsf(x) andg(x). Suppose that control input is

description of the sliding mode control method and fuzzy-neurahosen as

approximator, which form the basis to derive tHe, tracking- 1 1

based adaptive fuzzy-neural sliding mode controller vith, ~, _ —f(x) = 2001 ai%it1 — D01 Pta—1)i%i — ksgn(s)

tracking performance in Section Ill. Examples are illustrated in g(x)
Section IV. Conclusions are drawn in Section V. o ()
and thatP > 0,P ¢ R~ Ux(—1) gatisfies the Lyapunov
Il. PRELIMINARIES matrix equation
Consider thenth-order nonlinear dynamical system of the ATP+PA, = -Q (6)
form
. _ wheres is the sliding surface defined in (2);,—1); are elements
tn=fx)+gxutd, y=m (1 of P,k = ky 4+ d*, k, > 0,andQ > 0 is given. Thens — 0
wherex = [z,@,...,2" V7 = [z, 29,...,2,]7 € R is andx — 0 ast — oo. _
a vector of states which are assumed to be measurataleR Proof: Given in Appendix A. U

andy € R are the control input and system output, respectively, In practical applications, howevef(x) andg(x) are gener-

d is the bounded external disturbance, i|d},< d*, f(x) and @ally uncertain rather than given. The controller of (5) derived
g(x) are smooth uncertain nonlinear functiopés) is assumed N Lemma 1 is not always obtainable. Therefore, a new con-
strictly positive, i.e.g(x) > ¢' > 0. It is assumed that theretroller needs to be designed taking account the unknown non-

exists a solution for (1) and the order of the nonlinear systegifiear functions, which will be adequately approximated by a
(1) is known. fuzzy-neural approximator.

A. Sliding Mode Control B. Fuzzy-Neural Approximator

Sliding mode control generally assumes thad measurable  As shown in Fig. 1, the fuzzy-neural network [11], [12] con-
and thatf(x), g(x) are given. Define a switching surface as sisting of fuzzy IF-THEN rules and a fuzzy inference engine
is used as a function approximator. The fuzzy inference engine
uses the fuzzy IF-THEN rules to perform a mapping from an
whereq; are chosen such that_ a;A'~! is a Hurwitz poly- input linguistic vectorx = [z122...z,]7 € R™ to an output

S:a1$1+a2$2+"'+an$n, an:]- (2)

nomial. Equation (2) implies linguistic variableso(x) € R. Thelth fuzzy IF-THEN rule is
written as
Tp = —A1T] — A2T2 — ** " — Op_1Tpn_1 + S. 3
If X = [21...2,_1]7, the dynamics-reducegh — 1)th-order RW:if 7y is Al and -+ andz,, is A, theny is B’

system of (1) becomes . _ _
where Al and B! are fuzzy sets with membership functions

x=Ax+[0...0" 4 pat(w:) andpp:(y), respectively. By using product inference,
where center-average, and singleton fuzzifier, outp(t) from the
0 1 0 ... 0 fuzzy-neural approximator can be expressed as
0 0 1 e 0 B n
A= . : Lo : . 2im ¥ (Hj:l Hat (%’)) T
: . : : : o(x) = - " =0"9(x) (")
—a; —as —ag - —Gp_1 D it (szl Hai (azj))

Following similar derivations in [35], we can obtain a control . . ' _
law for (1) by using the sliding mode control method shown ihere..,: (x;) is the membership function of the fuzzy vari-
Lemma 1. ablex;, h is the number of the total IF-THEN rules, agtlis
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the point at whichug: (7)) = 1.6 = [7*%?...4"]" is an ad- the update laws derived to tune the adjustable parameter vector
justable parameter vector, agd= [)1¢?.. z/)h]T is a fuzzy 6. In what follows, theH, tracking design technique and the
basis vector, wherg® is defined as sliding mode control method are incorporated into the adaptive

" fuzzy-neural control scheme so as to attenuate the adverse ef-
(Hj=1 Hai (%’)) fects caused by the unmodeled dynamics, disturbance, and ap-
h n _ ’ proximate errors.
. a AilT s X X . .
21 (Hj—l “Aa‘( ’)) To approximate the uncertain nonlinear functigf{x) and
To approximate the uncertain nonlinear functigiix) and g¢(x), (1) becomes
g(x) in (1), adaptive update laws to adjust the parameter vector . T T
8 in (7) of the fuzzy-neural approximator need to be developed. n =0y Py (x)u+ 07 9 (x) +w
Let f(x) andg(x) be the estimation functions for the uncertain y=m (15)

nonlinear functionsf(x) and g(x), respectively. By using the \ , o0 _ = 0*T¢f d+ gu— 0*T¢ u is the lumped

fuzzy-neural approximator in (7), the estimation functigis) uncertainty. It is assumed that there exist optlmal parameter es-

andg(x) can be obtained from the outputs of the fuzzy- neurﬁl‘natesa .0" defined as (13) and (14), such that the approxi-
approximator, which are defined as follows: g

mation error is minimal. To facilitate the design process of the
f(x 16;) = of¢(x) (9) controller, the lumped uncertainty is generally assumed to have
an upper bound.

R T Assumption 3:There exists a positive constant, such that

9(x|8y) =0, 9(x) (10) lw| < wt.

whered; and@, are adjustable parameter vectors. The fuzzy- Based on Assumption 3, a controller which assures asymp-

neural approximator is valid under the following assumptiondotic stability for the uncertain nonlinear system can be obtained
Assumption 1 [27]: Let x belongs to a compact s&f, = from Lemma 3 below.

{x € R*: ||x|| € m, < oo}, andm,, is a designed parameter. Lemma 3: Consider the nonlinear system (1) with uncertain

Itis known that optimal parameter vect@¥sandd lie in some honlinear functionsf(x) andg(x), which is approximated as

(%) =

(8)

and

convex regions (15). Supposé#\ssumptiond-3 are satisfied and control input
h is chosen as
Mg, = {6y € R" : ||64]| < ma, } (11) i N
and y —of"/"f > 1 WiTig1 — Doy Pin—1)iTi — ksgn(s)
~T
Mg, = {0, € R" : |0, < mq, } (12) iy, “

where the rading, andrme, are constants whered; andé, are the estimate @, and, , respectively, and

N Pin_1); are elements d in (6), and the update laws are chosen
0; = arg min {sup lf(x)— f(x|0f)|} (13) a(s b

0[6]\49 xEUy,
and 0; =Tsy,,
=3 —§ : 14 ) —
0, = arg  min g Lseugx l9(x) Q(XI%)I} (14) 8, = sy, u 17)

O wherel’ > 0isthe adaptation gain matrik,= ko+w*, ks > 0,
Assumption 2 [28]: The parameter vectd, is chosen such ands is the sliding surface defined in (2). Then— 0 and
thatg(x | 8,) is bounded away from zero. O x— 0ast — oo.
Therefore, the fuzzy-neural approximator in the form of (7) ~ Proof: Given in Appendix B.
can be used as a linearly parameterized approximator to approxAs shown in Lemma 3 = k2 +w" needs to be determined
imate the uncertain nonlinear functiofiéx) andg(x) to arbi- in advance to construct the control inputin practical appli-
trary accuracy [9] as Lemma 2. cations, however, the exact upper bousticannot be obtained

Lemma 2 [9]: For any given real continuous functignon in general. Given that the upper bountt can be chosen so as
a compact set/’ ¢ R"™ and arbitrarye > 0, there exists a to attenuate the uncertainties, large control chattering neverthe-

fuzzy-neural approximatof in the form of (9) such that less occurs. Case 1 of the illustrative examples in this paper will
show this effect for different: selected. To relax the imprac-
:‘Clg [F(x) = x(x)| <e. tical constraint, a new control law is designed by usingihg
O tracking design technigue based on a much relaxed assumption
below. O

Assumption 4 [29], [32]: The lumped uncertainty is as-
sumed such that € L»[0,T],VT € [0, c0).

To this end, we can proceed to introduce the main theorem

As mentioned earlier, the controller of (5) can not be obtained derive a control law, which guarantees &g, tracking per-
by Lemma 1 if f(x) and g(x) are uncertain nonlinear func-formance for the overall system without prior knowledge on the
tions. To solve this problem, the fuzzy-neural approximator igoper bound of the lumped uncertainties of the uncertain non-
used to approximate the uncertain nonlinear functions by usiligear system.

Il. H., TRACKING-BASED ADAPTIVE FUzZZY-NEURAL
SLIDING MODE CONTROLLER
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Theorem 1: Consider the nonlinear system (1) with uncertain Remark 2: This paper investigates mainly on SISO systems.
nonlinear functionsf(x) and g(x), which is approximated as However, it can be easily extended to MIMO systems via an
(15). Supposdéssumptiond, 2, and 4 are satisfied and controlnput-output linearizaton technique [36]. A brief description on

input is chosen as

AT n—1 n—1
—of'l/)f - Ei:l QiLi+1 — Ei:l Pn—1)i®i — %
U =
~T

0.’] ’l/)!]
(18)

and the update laws as (17), where 0 is the design constant
serving as an attenuation levels the sliding surface defined in
(2), andp(,,—1); are elements dP in (6). Then thef{ ., tracking

performance [29], [32] for the overall system satisfies the fol-

lowing relationship:

T
% /0 xI(T)Qx(7) dr
< £5°(0) + 3 (O)PX(0) + 507 ()L 16,(0)
+19T(0)I‘*19 (0)+1 : [ (r) d (19)
5 - g 2p w T T

0

whered; = 0% — 8, andd, = 67, — 0.
Proof. Given in Appendix C.
As shown in Theorem 1, the design constargerving as

an attenuation level is specified by designers during the destgm® (z:) = exp(

process. The constraint to specify an upper bauhaf the un-

the derivations toward a similar design approach for MIMO sys-
tems is given in Appendix D.

IV. |LLUSTRATIVE EXAMPLES

Example 1:Consider the following nonlinear dynamical
system [35]:

jﬁl = X2
.i’gzl’g

i3 = f(x)+u+d 1)

where f(x) = 122 denoteghe uncertain nonlinear functign

andd = 0.5siu(t) is the disturbance. Let the sliding surface be

L g].We obtain
2 5

(1)'2] by solving the Lyapunov matrix equation. A

defined ass = 1 + 2x2 + x3, andQ = |

0.5
P =15

set of membership functions are constructedffat) = =1 x2
as

pps (i) = exp[—(xi +1)°];  ppe () = exp[—(2; +0.5)%;
)i (i) = expl—(; — 0.5)%;

—2?
s (i) = exp[—(x; — 1)?]; fori=1,2,3.

known lumped uncertainties required in Lemma 3 is therefore

removed. Furthermore, chattering effect of the control input k€t I' = 0.1 |, and initial states<(0) = [1 0.5 0]. Control
substantially reduced by using this approach, as will be demdaws will be derived by using Lemma 3 (Case 1) and Theorem
strated in Case 2 of the illustrative examples in this paper. ThdCase 2), respectively, depending on different assumptions on

desired effect comes at no surprise because thekersgn(s)

the lumped uncertainties.

accounting for the control chattering in the control law of (16) is Case 1) Assume that the upper bousid of the lumped un-

replaced by a much smoother tes(2p?) in the derived con-

trol law of (18). O
Remark 1:If a set of initial conditionsx(0) = 0,s(0) =

0,6;(0) = 6%(0) andf,(0) = €,(0) can be obtained, and

Q =1, then control performance of the overall system satisfies

[Jw

X||2

|
where||x[3 = [ %7 (r)x(r) d, ||[w]}3 = [ w?(r)dr. That
is, an arbitrary attenuation level can be obtained; i§ ade-
guately chosen.

Design Algorithm:

Step 1) Select control parametetsas, .. ., a,_; suchthat
matrix A; is a Hurwitz matrix. Determinen,, and
meq .

Step 2) Choose an appropri&eto solve the Lyapunov ma-
trix equation (6).

<p (20)

(V)

certainty is known, i.e jw| < w*, andk = ks +w"

is chosen as 0.3 and 0.5, respectively. According
to Lemma 3, the control input can be obtained as
U= _éT'l/)_.’L'Q —2w3—(0.521 +1.552) —ksgn(s),
with update lawd = I'se.

Case 2) Assume that the upper boustd of the lumped un-
certainty is unknown. The design constantvhich
serves as an attenuation level, is chosen as 0.1 and
0.2, respectively. According to Theorem 1, the con-

trol input can be obtained as = —@Tz/; — Zo —
2x3 — (0.5x1 + 1.522) — (s/2p?), with update law
6 = I'sy.

Figs. 2 and 3 show the time responses of the stajend
control inputx, with £ = 0.3 of Case 1 in Example 1 by using
Lemma 3, assuming that the upper bound of the lumped uncer-
tainties is available for design. As clearly demonstrated in Fig. 2,
the time responses of the states are oscillatory due to the distur-

Step 3) Construct membership functions of the fuzzy setslbance[d = 0.5sin(¢)]. This comes at no surprise because the

approximate the uncertain nonlinear functigffx)
andg(x).

Step 4) Choose an appropriate adaptation gain mHtrix
establish the Lyapunov function.

improper selection of cannot effectively suppress the distur-
bance. Ift = 0.5 is selected, the time responses of the states
are satisfactory as shown in Fig. 4. Although the impact of the
disturbance is alleviated as shown in Fig. 4 with the selection

Step 5) Obtain the update laws from (17), and control laves a betterk = 0.5, the problem of control chattering, however,
from (16) or (18), respectively, depending on difbecomes much serious as clearly demonstrated in Fig. 5, in com-

ferent assumptions on the lumped uncertainties.

parison to that of Fig. 3. In general, the control law obtained by
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State responses (k=0.3) Control input # (¥=0.5)
1.4
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038 2
0.6
04 [

0.2

0 2
3t
4t
06 -5
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time(sec) 0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fig. 2. State responses in Case 1 witk= 0.3 in Example 1. ) ) ) . . .
Fig.5. Time response of the control input in Case 1 Witk 0.5 in Example

Control input # (k=0.3) !
3 State responses {0=0.2)
4 15
3 |~
1 N
2
1 05 |
of AR YO O b
] -0.5
3 4 ix,
-4 ¢
-1.5

~o 5 10 15 20 25 30

Time (sec) 2

0 S Timefsec) 10 15

Fig. 3. Time response of the control input in Case 1 with= 0.3 in

Example 1. Fig. 6. State responses in Case 2 (the proposed method)pwith 0.2 in

Example 1.
14 State responses (k=0.5) Control input # (p=0.2)
’ 5
0
-5
4
-10 3
2
15 1
. J—
-20 -
-2
-3
0.2 25 4
0.4 B x; e 230 * LS 2 25 3 35 4 45
06 L— 5
0 1 2 3 Tim:(sec) 5 6 7 8 9 10 0 5 Time (sec) 10 16
Fig. 7. Time response of the control input in Case 2 (the proposed method)
Fig. 4. State responses in Case 1 witk= 0.5 in Example 1. with p = 0.2 in Example 1.

Lemma 3 to compensate the lumped uncertainties results in Egample 1 by using the proposed method (Theorem 1), under
rious control chattering. In general, there is a trade-off betwe&ssumption 4 without prior knowledge on the upper bound of
chattering and robustness. the lumped uncertainties. As demonstrated in Fig. 7, the control
On the other hand, Figs. 6 and 7 show the time responsexhbéttering is significantly reduced while maintaining satisfac-
the statese; and control input: with p = 0.2 of Case 2 in tory state responses, compared with those shown in Figs. 3 and
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State responses (p=0.1) State responses (k=1.5)
1.5
1 X
05|
L2 o
-0.5
K v
15
2y 5 10 15 0% 5 10 15

Time(sec) Time (sec)
Fig. 8. State responses in Case 2 (the proposed method)with 0.1 in Fig. 10. State responses in Case 1 vitk: 1.5 in Example 2.
Example 1.

Control input u (k=1.5)

Control input  (p=0.1)
5

0 \f\\/ }
-5 -3
-4
-5
0 5 10 15
Time (sec)
5 10

15
Time (sec) Fig. 11. Time response of the control input in Case 1 with= 1.5 in

Example 2.
Fig. 9. Time response of the control input in Case 2 (the proposed method)
with p = 0.1 in Example 1.

in Fig. 11, the problem of control chattering becomes serious in
order to obtain the acceptable state responses shown in Fig. 10.
On the contrary, the proposed method (Theorem 1) uses the
esign parametes as an attenuation level under Assumption
; \tﬁthout prior knowledge on the upper bound of the lumped
that the problem of control chattering does not occur as dem(mfcertainties. Figs. 12 and 13 show the time responses of the

strated in Fig. 9. . statese; and control input: with p = 0.1 of Case 2 in Example

Example 2: Consider the uncertain nonlinear system havm@ by using Theorem 1. As demonstrated in Fig. 13, the control

t_he same model as (21), where the uncg:rtam2nonll2near 1Eurcl,?fattering is significantly reduced, compared with that shown
tion and external disturbance afé¢x) = z{ 4+ z3 + x5 and

d — 0.5sin(t ivelv. If th desi ; in Fig. 11, in whichk = 1.5 is used by Lemma 3.
= 0.5sin(f), respectively. € same design parameters summary, a design paramejeserving as an attenuation

(k=03 0r0.5) as Case 1in Example 1 are taken for ComIOUt‘Iaével, rather than an estimated upper bound, for the lumped

simulation by Lemma 3 for this example. We find that the d'Stu[Inc(irtainties can be specified by the designer, so that a de-

bance cannot be effectively suppressed because the upper b ; ;
of the lumped uncertainties has changed due to the change 0%[, system performance can be obtained via the propsed

. X . _ g%king—based adaptive fuzzy-neural sliding mode controller.
uncertain nonlinear function. Therefore, the previously selecte

parametek can not be applied to different systems in general. It
is therefore a typical trial-and-error process to determine a suit-
able k&, which satisfies Assumption 3 that the upper bound of In this paper, an adaptive fuzzy-neural control scheme
the lumped uncertainties is available for design as required imgorporating both thed ., tracking design technique and the
Lemma 3. Figs. 10 and 11 show the time responses of the statiding mode control method for uncertain nonlinear systems
x; and control input. with £ = 1.5 of Case 1 in Example 2 by has been developed, in which a fuzzy-neural model is used to

using Lemma 3 via a trial-and-error process. As demonstrat@gproximate the uncertain nonlinear functions of the dynamical

5 with variousk by Lemma 3. If the design paramejgrwhich
serves as an attenuation level, is further reduced te 0.1,
better state responses can be obtained as shown in Fig. 8.

V. CONCLUSION
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1:“” responses (p=0.1) The time derivative of (22) is
1 *1 = s[larze + agzz + - + ap—12n + f(x) + g(x)u + d]
1
05 + §>~<T [PA; + ATP]x+[0...0s]Px. (23)
0 - Apply (5) to (23) and lets = k; + d*, k1 > 0. We have the
05 following relationship:
-1 1 1
x o= —k|s| — QiTQi +sd < —ky|s| — giTQi <0. (24)
15
> . . We concludes — 0 andx — 0 (x — 0) ast — oo. This
0 5 10 15 completes the proof. O

Time(sec)

Fig. 12. State responses in Case 2 (the proposed methodpwith0.1 in

Example 2. APPENDIX B

Proof of Lemma 3:Consider the Lyapunov function
Control input (p=0.1)

20 1 1~ ~ 1-71 ™ 1-7 -
U= 582+§XTPX+ §0fI‘ 10f+§0gr 10g (25)
0
20 wheref; = 0% — 6y, andd, = @, — 6,. The time derivative of
(25) is
40 iy T T
v=-=s Zaixi—l—l —1—0} ¢f+0; P u+w
-80]| =1
1.p .
80 + 5:5 [PAl + A{P] T
n—1 T R T R
-100 | | +5 Y Pla—tyizi —0;T 10, —0,T 10, (26)
0 5 10 15 =1
Time (sec) Apply (16) and (17) to (26) and lét = ks + w*, ks > 0. We

Fig. 13. Time response of the control input in Case 2 (the proposed meth¢five the following relationship:
with p = 0.1 in Example 2.

< —kals| %XTQX —0,T7(6; - Tsyp,)
system. To facilitate the design process, an design algorithm, ST
which can be computerized to derive thg, tracking-based 0,070, — I'stp,u)
adaptive fuzzy-neu_ral sliding mode controller for the ur_wcertain < —lsls| — liTQi <o0. 27)
nonlinear system, is also presented. As shown in this paper, 2
the proposedd.,, tracking-based adaptive fuzzy-neural slidingdy using Barbalat’s lemma in [30] and Theorem 2 in [11], (27)
mode controller not only attenuates the lumped uncertaiimpliess — 0 andx — 0 (x — 0) ast — oo. This completes
ties caused by the unmodeled dynamics, disturbances, &melproof. O
approximate errors associated with the uncertain nonlinear
system, but also significantly reduces the control chattering APPENDIX C
inherent in conventional sliding mode control. Furthermore, the
constraint demanding prior knowledge on upper bounds of the
lumped uncertainties is removed through the design algorithm ,, — 132 + lic'TPfc' + lé?r—léf + léTr—lég. (28)
of the proposed approach. As demonstrated in the illustrated 2 2 277
examples, théf., tracking-based adaptive fuzzy-neural slidind he time derivative of (28) is
mode controller proposed in this paper can achieve a better

Proof of Theorem 1:Consider the Lyapunov function

control performance over the conventional methods. n—1 . .
v=-s Z%‘%‘-H +0} 1/)f+0; P u+w
APPENDIX A 1i:1
Proof of Lemma 1:Consider the Lyapunov function + QiT [PA, + ATP] %
n—1 - . - .
ST s TG
ve iy limpy (22) +5Y Pnorywi — 0,170, — 6,716, (29)

2 2 i=1
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Substituting (17) and (18) into (29), we have Ty g1y Up = Tpigrottr_+1. ThEN the input-output
form of (33) can be described as

-1 1 1 -1 1 (r1)
@:7~TQX—§<% - pw>2+§p2w2§75{TQ5{+§p2w2. y](er)
(30) 2| =) + Gxu+d (35)
By Assumption 4we integrate (30) from = 0to¢ = 7°, and '
obtain ue)

where we get the equation shown at the top of the next page.

1 T 1 T e .
5/ KT (1)Qx(r) dr < v(0) + 5pQ/ w(r)dr. (31) Specifically, (35) can be also rewritten as
0 0 by = o
jﬁg = X3

Substituting (28) into (31), we have tlé., tracking perfor-
mance, satisfying

p
1 r -/tr = X)+ AX)u; + d
_/ iT(T)Q~(T)d7‘ 1 fl( ) ;gl ( ) 1
2 Jo . =
1 2 1~T . 1.7 17 Tpi 41 = Tp 42
< 35 (0) + 5% (0)Px(0) + §0f (0O)r="6,(0) riba = Trii3
1.1 —1p 1, ¥ 2
+ §0g (0)r=-0,(0) + Tl w(7) dr. (32) )
0
.1‘ ry — b % d
This completes the proof. O Frier = F200) + ;gQ (i +dz
APPENDIX D ‘
Lritrot-rp_141 = Lry4ro4-rp 142
A. Derivations of a Similar Design Approach for MIMO Ty drgboorp_1 42 = Trp g poerp_1+3
Systems
According to [36], the input-output linearization of MIMO P
systems can be obtained by differentiating the outputs of MIMO Ty grgttr, = fp(X) + Z Ipi(X)u; + d,
systems, until at least one of the inputs appears. Consider the i=1
MIMO nonlinear dynamical system n=n
Yo = Tri 41
pr
2=1(z)+) gi(n)u +d
=1
y = h(z) (33) Yp = Tridro+-4rp_1+1- (36)

Equation (36) is basically a setpfISO nonlinear dynamical
systems with different order similar to (1) in the paper. Design
methodology developed in the paper for SISO systems can then
be applied to the MIMO system.

In order to derive a control law for the MIMO system by using
the input-output linearizaton technique, the following assump-

ions are required.

Assumption (5):yi(k) can be realizable for = 1,2,...,p,

wherez € R" is a vector of statesl’ € R? represents a vector
of the external bounded disturbancass [u; us --- up]T S
RPandy = [y1 2 -+ yp|T € RP are the control inputs and
system outputs, respectively, afidz), g/(z),¢ = 1,2,...p,
andh(z) are unknown and smooth vector functions.

Input-output linearization of MIMO systems is obtained b
differentiating the outputg;,< = 1,2,...,p, until at least one
of the inputs appears. We have

k =0,1,...,r — 1, wherer; represents the relative degree
P of y;, and is finite and known. Moreover; 472 + - - -7, = n.
g = Lih; + ZLgé_L’f‘;—lhiuj +L’f’;’;12p I Assumption (6):G(x) is bounded away from singularity
LUl .
j=1 k=1 2k over a compact séf, C R". Moreoverd is bounded.
< ) o Based on the above-mentioned assumptions and the design
+ Z L;,;EP - d,Lde’fi " hy, procedures proposed in the paper, similar results extended for
j=1 hor e the MIMO systems can be easily obtained. O
i=1,2....p (34)
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